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ABSTRACT  
Advances in the field of artificial intelligence continue to expand the range of potential military applications 
for this group of technologies. This paper explores the crucial role of trust in human-machine teaming for 
joint operations and the potential implications of relying on AI to supplement human cognition. Trusting 
machine intelligence will be a crucial component in future operations if AI is relied upon to accurately 
process sensor data, operate autonomous systems and platforms, or provide advantageous decision support 
through proposed operational concepts such as decision-centric warfare that envision a central command 
and control role for machine intelligence. Given these technical and doctrinal developments, the concept of 
trust becomes highly relevant for the use of machine intelligence in military operations at the tactical and 
operational levels and correctly calibrated trust levels are fundamental for safe and effective operations. 
After a brief review of recent advances in machine intelligence and an exploration of the concept of trust, the 
paper outlines current and potential applications for AI on the battlefield, and challenges stemming from 
either insufficient or unjustifiably high levels of trust. 

1.0  INTRODUCTION 

Throughout history, technology has expanded the domains of armed conflict, the tempo of tactical 
engagements, the geographic breadth of the battlefield, and the means by which commanders communicate 
with their forces. Technological innovations – both military and civilian – have altered how militaries fight 
and how states plan and conduct those conflicts. In the 21st century, few advances have so far garnered as 
much attention as the group of technologies known collectively as artificial intelligence (AI). AI is poised to 
usher in a new era in which machine intelligence and autonomy are generating distinctly new concepts for 
the planning and execution of military operations. Algorithmic warfare may lead to something unique: 
systems that augment or even displace human decision-making processes, and at speeds that may exceed the 
cognitive capacity of human planners. 

The integration of emerging technologies raises any number of fundamental organisational and ethical issues 
that deserve attention. Using qualitative social science methodology, this paper will focus on one important 
aspect of human-autonomy teaming (HAT): encouraging the appropriate levels of trust in machine 
intelligence. A vast body of academic literature exists that focuses on trust in automation or robotics, but less 
work is available regarding specific military applications. What challenges and opportunities for trust 
calibration when AI is operationally deployed in joint operations?  After a brief review of AI and an 
overview of the likely applications of machine intelligence on the battlefield, the paper explores the concept 
of trust and trust calibration before analysing the pitfalls and potential solutions for encouraging appropriate 
levels of trust. 
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2.0  ADVANCES IN AI 

For decades, humans have been fascinated with the possibility of imbuing machines with some form of 
artificial intelligence, defined by Nils Nilsson as “that activity devoted to making machines intelligent, and 
intelligence is that quality that enables an entity to function appropriately and with foresight in its 
environment” [1, p. 13]. Two broad approaches to AI emerged during the earliest days of the digital age. A 
top-down expert system approach used complex preprogramed rules and logical reasoning to analyse a 
particular data set. For well-defined environments with predictable rules – applications such as analysing 
laboratory results or playing chess – the performance of expert systems or “symbolic” AI (based on symbolic 
logic) depended largely on processing speeds and the quality of the algorithms. The other broad category 
uses a bottom-up machine learning approach that modelled the way humans learn by detecting patterns 
within data. Neural networks are a form of machine learning modelled after the human brain that are able to 
identify complex patterns by using multiple (and therefore “deep”) layers of artificial neurons, are 
fundamental to the technique known as “deep learning” [2]. Through its ability to find relationships within 
data sets, such techniques are also termed “connectionist” [3]. 

The differences between top-down, rule-based symbolic systems and bottom-up machine learning 
connectionist techniques are substantial, particularly regarding the potential range and flexibility of their 
applications. Deep learning approaches are notable due to an ability to separate the learning from the data set 
upon which it trains and therefore can be applied to other problems. Whereas rules-based algorithms can 
perform exceedingly well at narrowly defined tasks, deep learning approaches are able to rapidly find 
patterns and in effect teach themselves for applications for which “brute force” expert-system computational 
approaches are ineffective [4]. A number of recent AI advances demonstrate an ability to mimic creativity, 
generating effective approaches to problem solving that can appear counterintuitive to humans [5].  

In general, however, AIs remain narrow or “brittle” in the sense that they function well for particular 
applications, but remain inflexible when used for others. Compared to human cognition, machine 
intelligence is far superior when applying rules of logic to a data set given that machine computational 
speeds far exceed the human brain, but fall short when attempting inductive reasoning where it must make 
general observations about a data set or an environment. Massive training sets of data are still necessary for 
most machine learning, even though new approaches (including generative adversarial networks (GAN) and 
“less than one-shot” or LO-shot learning) requiring very small datasets are emerging [6]. Image recognition 
algorithms are easily confused, and cannot immediately or intuitively understand situational context as well 
as humans. This brittleness extends to other problems such as games. Whereas AI often exhibits superhuman 
capabilities in video games, they often cannot transfer that expertise to a new game with similar rules or 
playing mechanics [7].  

While AI technologies continue to make significant progress in becoming more adaptable, anything 
approaching human-like artificial general intelligence remains elusive [8]–[10]. Evaluating the near-term 
future of AI is further complicated by the incremental progress of the technology. The hype surrounding AI – 
fuelled in no small part by the success of deep learning approaches – has led to both unrealistic expectations 
surrounding the future of the technology and a normalization of its very substantial progress. As one report 
noted, “AI brings a new technology into the common fold, people become accustomed to this technology, it 
stops being considered AI, and newer technology emerges” [11, p. 12]. Although symbolic AI and the 
various forms of machine learning have comprised the bulk of recent progress in the field, perhaps with the 
exception of attempts to fuse both approaches, the future remains uncertain [3], [12]. Some speculate that the 
progress resulting from machine learning techniques may plateau, while others remain optimistic [9], [13]. 
Related technological advances, such as computer chip design in the short term and quantum computing in 
the long term, may influence the pace of further progress [14], [15].  
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3.0  ARTIFICIAL INTELLIGENCE IN JOINT OPERATIONS 

For many military applications, however, narrow uses of AI are more than adequate. Algorithmic solutions 
already in use by militaries around the globe can be considered “artificial intelligence” and there is no 
shortage of proposed uses for AI. The possible military capabilities afforded by AI are part of a dramatically 
different future operating environment envisioned by analysts such as Christian Brose and former defence 
officials such as Robert Work [16], [17]. If these predictions regarding the effects of artificial intelligence 
come to fruition, they will have wide-ranging implications for the planning and implementation of joint 
operations. Existing and near-future applications can be divided into three categories: data integration and 
analysis, autonomous systems, and decision support software. 

3.1 Data integration and analysis 
The use of AI in the operation of various capabilities and platforms may oftentimes go unnoticed for the 
average user simply due to its integrated role in system architectures. Examples of this include civilian 
satellite navigation, internet search engines, or online translation tools. In a military context, wireless 
communication and radars can leverage machine-learning algorithms for optimal use of the electromagnetic 
spectrum [18]. For unmanned or remotely piloted aircraft, onboard algorithms allow sensors to 
independently conduct preliminary data analysis and thereby reduce bandwidth requirements. Algorithms are 
already useful for analysing sensor data across a range of systems and platforms.   

In addition to these integrated applications, the conscious and active use of AI for data analysis extends to 
intelligence, surveillance, and reconnaissance (ISR) efforts. The US Air Force created the Algorithmic Cross 
Functional Team in 2017 to apply AI to image analysis in its efforts to identify and track targets, and 
establish patterns of life that can enhance situational awareness [19]. In cyberspace, pattern recognition 
algorithms can similarly determine a network’s normal operating pattern to enable easier identification of 
deviances that may signal the presence of an intruder. The use of AI for open-source intelligence (OSINT) 
analysis can identify individuals or even make rough near-term predictions about insurgent activity [20]. 
Some experimental AI applications such as the Global Information Dominance Experiments (GIDE) sift 
through massive amounts of multisource data for patterns and trends to make predictions about a range of 
future events [21]. 

3.2 Autonomous systems 

A second category of AI applications encompasses a range of autonomous systems. Autonomy is a term that 
defies precise and concise definitions. A 2016 report by the Joint Air Power Competency Centre (JAPCC) 
distinguished automation – which involves machines preforming predictable, bounded pre-defined tasks set 
by humans – from a fully autonomous system that could determine its own course of action, deliberate 
decisions not restrained by pre-programmed responses, an ability to learn and compile “experience”, and no 
longer completely predictable in its actions [22].  Paul Scharre and Michael Horowitz described three 
dimensions of autonomy in a 2015 paper: the human-machine command and control relationship simplified 
by determining whether a human is “in”, “on” or “out of” the decision-making loop; the complexity and 
abilities of the machine or system; and the type of function being automated [23].  

Within the context of AI, it is worth noting that the distinction between automated and autonomous becomes 
blurred as machine intelligence is highly relevant for a number of automated functions that enable 
autonomous systems, including system operations and self-diagnostics, autopilots, combat software and 
target tracking/identification, and self-guided weaponry [22]. Autonomy therefore describes a sliding scale 
of independent machine functionality along a number of variables, including level of human-machine 
interaction, an ability to independently sense and adapt to changing contexts, and decision-making abilities 
to accomplish some set of predetermined goals and continuously learn and improve from those decisions. 



Machine Intelligence and Trust: the Implications of AI for Joint Operations      

AIML-02-1 - 4 STO-MP-SAS-OCS-ORA-2021 

A broader definition of autonomy might include current military assets ranging from air and missile defence 
systems, counter-rocket or artillery systems, active protection systems for ground vehicles, loitering 
munitions, advanced cruise missiles, and cyber capabilities [23], [24]. While autonomous systems are 
currently deployed in most warfighting domains, the next generation of autonomy will leverage AI to enable 
even greater independence from human direction. Currently under development are space, maritime, 
airborne and ground-based platforms and systems that, as the JAPCC report outlined, represent a qualitative 
evolution from a tool at the disposal of a tactical commander to a partner with which humans will have to 
interact and cooperate.  

Autonomous aircraft will transport cargo or perform refuelling duties. Concepts known colloquially as “loyal 
wingman” programs seek to develop uninhabited aircraft that can operate alongside piloted craft, thereby 
offering networked sensors, additional munitions and expanded tactical options. Autonomous ships will soon 
give maritime commanders a similar capability at sea, and ground-based systems are also currently under 
development [25], [26]. Advancements in size, weight and power characteristics for data processing, novel 
manufacturing processes and AI appear likely to enable large numbers of small, unmanned systems that can 
be controlled and coordinated in swarm formations using artificial intelligence [27]. With lower unit costs 
compared with piloted aircraft and uploadable navigation, battle management, and targeting software, 
autonomous systems are poised to dramatically increase the number of platforms on the battlefield [28], [29]. 

3.3 Decision support and decision-centric warfare 

Military commanders currently rely on machine intelligence in their decisionmaking processes, ranging from 
algorithmically derived collateral damage estimates to targeting solutions for air and missile defence 
systems. For a range of systems, computer-generated data analysis assists situational awareness and provides 
options for warfighters. Future decisionmaking aids may bring about further developments. The introduction 
of large numbers of autonomous weapon systems using AI decision-making software may influence the 
operational level of war, particularly command and control (C2) aspects of military operations.  

Appropriately enough, the now-common term emerged during the nascent information technology age of the 
1960s to distinguish the authority and responsibility of command from the processes and framework that 
create the necessary conditions for the commander to exert control over the implementation and execution of 
operations [30]. Although observation of tactical engagements by higher-level commanders and political 
leaders has become more commonplace, it may be that the operational level may be the most appropriate for 
having humans “on the loop” if autonomous systems are deployed. Even with fleets of self-synchronizing 
autonomous surface vessels or aerial systems, the need to coordinate the broader operational effort will 
remain human-centric. If that is the case, however, operational planning and coordination may need 
assistance from AI simply to maintain an advantageous and effective battle rhythm.  

This is the motivation behind the so-called “decision-centric” concept of warfighting. One such concept 
developed by the Defense Advanced Research Projects Agency (DARPA) known as mosaic warfare utilises 
AI to coordinate a network of disaggregated forces. The concept proposes a hybrid C2 configuration that 
utilizes human command and machine control, whereby commanders choose tasks in need of completion 
from a set of recommended courses of action (COA) and most advantageous manned and unmanned force 
components available from the AI-enabled decision support system [31, p. 35]. Concepts integrating AI and 
autonomous systems in this fashion are a logical – albeit ambitious – progression given the perceived 
advantages of rapid machine-based decision-making, particularly if a connected battlespace allows for data 
fusion among a disparate but linked network. The sheer volume of available information is such that 
machine intelligence will be required to understand and act upon that data in an advantageous manner.  



Machine Intelligence and Trust: the Implications of AI for Joint Operations 

STO-MP-SAS-OCS-ORA-2021 AIML-02-1 - 5 

4.0  TRUST AND MACHINE INTELLIGENCE 

The anticipated role of machine intelligence in all areas of military operations – from sensor data to weapons 
systems to operational decision support – suggests a growing reliance on AI. An expert group report under 
the rubric of the Nato 2030 initiative recommended that the Alliance “should encourage the incorporation of 
AI into strategic and operational planning. It should exploit the power of AI-driven technologies to enhance 
scenario planning exercises and long-term preparedness”[32].  Official statements [33] and publications such 
as the US Navy’s recently-released policy on intelligent autonomous systems emphasises trust as an 
important component of reliance, and includes questions such as how and when humans should trust 
machines [34]. As machine intelligence becomes more capable of increasingly complex cognitive functions 
and an ability to operate independently, humans will need to view AI and autonomous systems as partners 
just as much as tools. With any partnership, trust is a crucial to effective cooperation. 

4.1 Defining trust 
Trust is one of many concepts that initially appears intuitive but becomes more complex upon further 
inspection. Not surprisingly, multiple definitions and conceptualisations of trust have emerged over the past 
decades. After reviewing some of the various attempts to define the term, the authors of one influential 
article concluded that, “these definitions highlight some important inconsistencies regarding whether trust is 
a belief, attitude, intention, or behaviour. These distinctions are of great theoretical importance” [35, p. 53]. 
One popular definition from Mayer et al. (1995) contends that trust is the “willingness of a party to be 
vulnerable to the actions of another party based on the expectation that the other will perform a particular 
action important to the trustor, irrespective of the ability to monitor or control that party” [35, p. 53]. A more 
recent and simplified definition of trust is “the attitude that an agent will help achieve an individual’s goals in 
a situation characterised by uncertainty and vulnerability” [35, p. 51]. The presence of vulnerability and 
therefore risk is a significant component of trust since it attaches a potential cost for misplaced trust. 

Although the building blocks of human-machine teaming are distinct from human interpersonal 
relationships, many of the fundamentals are comparable. As Keng Siau and Weiyu Wang [36, p. 47] noted, 
trust is dynamic and is typically built gradually via two-way interaction, but can also be strongly affected by 
initial impressions. Some scholars have posited that generating trust occurs initially through the 
predictability of future behaviour, which is then repeatedly confirmed through consistent behaviour that 
establishes dependability, and finally evolves into a broad judgement of reliability akin to faith [35, p. 59].  

4.2 Trust in automation 
Three similar elements influence trust in automation. The past and current performance of the automation, 
along with information about what the system actually does, parallels predictability. Details about the 
automation’s design and whether it will achieve the goals set by the operator can be termed process 
information that reveal how the system operates, thereby eliciting the same dynamics as dependability. 
Finally, the purpose or rationale behind the automation, and whether its use aligns with the designer’s intent, 
has an abstract quality of transference (trust the designer’s intent, therefore trust the automation) similar to 
faith [35, p. 59].  

For many scholars, it is at this point that human interpersonal relationships and human trust in machines 
begin to differ. Whereas people are usually sceptical of strangers and trust builds gradually as described 
above, humans often have initial, faith-based expectations that machines will work perfectly. This initial trust 
quickly erodes when errors arise, but faith can eventually be replaced by the more durable qualities of 
predictability and dependability [37, p. 411]. In a comprehensive 2015 survey of scholarly articles on trust 
and automation, Kevin Hoff and Masooda Bashir [37] developed a three-part trust model that takes this 
initial trust in machines (dispositional trust) as its starting point and adds context (situational trust) and 
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experience (learned trust) to the mix.  

They posit that dispositional trust of automation is the most stable of the three and most influenced by 
culture, age, gender and personality traits. Most of these variables have a demonstrative impact but with few 
clear tendencies [37, p. 413]. For Nato, the role of culture – which can be defined as a “set of social norms 
and expectations that reflect shared education and life experience”–   represents a particularly salient factor 
given the alliance’s multinational character [35, p. 57]. Factors such as attitudes towards power and authority 
or balancing between individual or collective interests can play a role. One study of trust in e-commerce 
services among customers in Iceland, Finland and Sweden revealed significant differences regarding 
dispositional trust, with customers in Finland harbouring the greatest scepticism and those in Iceland 
exhibiting the highest levels of trust [35, p. 58].  

Along with the initial impact from dispositional trust, situational trust is the model’s second component with 
a substantial role in developing trust in automation. Contextual factors may include external variabilities 
such as system complexity, operator workload that affects automation monitoring, environmental factors that 
influence the risks and benefits of automation, or organisational structures. Relevant situational trust factors 
considered “internal” to the human operator might include self-confidence, subject matter expertise in the 
domain being automated, the operator’s ability to focus (affected by stress, sleep, boredom, internal 
motivation), or even a positive mood – which has been linked to higher levels of initial trust in automation 
[37, p. 418]. 

The third and final component of the model is learned trust, which encompasses a broad set of variables 
relevant to trust in automation. An operator often has some pre-existing knowledge of automation, whether it 
comes via previous experience from other automated systems or based on the reputation of the automation in 
question. Their expectations regarding automation and knowledge regarding its performance influence trust 
even before an operator interacts with the system. The initial interaction is influenced first by the 
automation’s design features: its appearance, ease of use, modes of communication, and transparency [37, p. 
421]. Design choices relating to the human-machine interface such as display layout or types of voice 
commands can play a significant role in eliciting trust. After the initial levels of trust garnered from prior 
experience or the design features baked into the system, the operator continually and dynamically gauges 
trust based on factors such as reliability, predictability, system utility, and when and how errors occur, 
including how the operator is alerted to them [37, p. 424]. 

4.3 Trust calibration and misalignment 
Significant effort has been devoted to creating trust between humans and automated systems, but experience 
has demonstrated that excessive trust can also be problematic. Among the most common tendencies of 
automation “overtrust” or misuse include complacency and automation bias. Operators overseeing mostly 
reliable automated systems tend to become complacent and therefore less vigilant in their monitoring 
routines and assume – not surprisingly – that systems are functioning normally. A related issue is automation 
bias, where operators fail to respond when automation malfunctions or make incorrect decisions to follow 
automated recommendations [38]. One study suggests that pilots using a computer-generated 
recommendation system for de-icing procedures outperformed those without the aid as long as the computer 
provided correct advice, but performed more poorly when the advice was incorrect. In another study, 
operators responsible for in-flight retargeting of Tomahawk cruise missiles appeared to more acceptant of 
automated recommendations as the level of automation increased, suggesting the existence of automation 
bias [27]. 

Automation bias appears to have contributed to a number of commercial aircraft disasters, included the loss 
of Air France flight 447 in 2009. Veteran journalist William Langewiesche argued in a detailed 2014 article 
about the crash that the crew, so accustomed to relying on automated flying aids, were unable to comprehend 
what was actually happening to the aircraft when a faulty airspeed indicator led to a string of faulty decisions 
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and an ultimate failure to make the proper adjustments. Langewiesche’s succinctly summarized thesis was 
that  “automation has made it more and more unlikely that ordinary airline pilots will ever have to face a raw 
crisis in flight—but also more and more unlikely that they will be able to cope with such a crisis if one 
arises” [39].  

Rather than focusing ways to increase human trust of automated systems, developers often strive to elicit 
appropriate or calibrated levels of trust that correlate to the system’s capabilities. With properly calibrated 
trust levels as a target, overtrust can be understood as trust that exceeds the capabilities of the system, 
whereas distrust describes the opposite situation in which the operator trusts the system less than its 
capabilities might dictate [35, p. 55]. Achieving the proper trust alignment sounds simple enough but often 
can be complicated by normal human responses. As noted above, operators usually have high performance 
expectations when using systems, particularly those with machine intelligence. When errors occur, human 
operators tend to overcorrect their trust levels and lower their expectations to a level below the capabilities of 
the system – thereby transitioning directly from overtrust to distrust [40, p. 16]. 

4.4 Automated versus autonomous systems 
Most of the research into human-machine teaming over the past decades has focused on automated systems. 
A fundamental question for which there are few clear answers is the extent to which automated systems 
differ from autonomous systems. The distinction mentioned earlier in the paper distinguished between rigid, 
pre-determined, and predictable automated tasks versus unrestrained, dynamic, and unpredictable autonomy. 
One recent survey article on human autonomy teaming by Thomas O’Neill et al. noted, “the division 
between the two is a matter of degree and the differences are a moving target….at what point automation 
might be better described as autonomy is an open question” [41, p. 4].  

In practice, therefore, this distinction is more graduated and perhaps better understood as a sliding scale with 
automated functionality on one end and autonomous functionality on the other. Even this type of graduated 
approach has only limited utility due the fact that technological progress and human expectations naturally 
will consider autonomous functionality to be automated as we become more comfortable with its 
performance and reliability. To add further nuance, it may even be the case that autonomous systems could 
have an automated function, such as an autonomous AI-empowered cyber defence that acts upon threats in 
an unpredictable and unscripted fashion, but the network defences are considered automated.  

In a thought-provoking article on trusting autonomous weapons systems, Heather Roff and David Danks 
question a similar binary attitude categorising autonomous systems either as a tool “where reliability and 
predictability of behaviour is sufficient to ‘trust’ the system”, or  “a moral agent with values and preferences, 
in which case the threshold for ‘trust’ would be significantly higher” [42]. Similarly, O’Neill et al. introduces 
the concept of computer-based “autonomous agents” as “distinct entities that represent unique roles on the 
team that would otherwise have to be filled by a human” [41, p. 4]. While acknowledging Roff and Danks’ 
discomfort with the binary concept of moral agent versus tool, the distinction nevertheless has some value in 
conceptualising the differences between trusting automation and trusting autonomy. Rather than simply 
performing pre-defined actions for a particular set of circumstances, the autonomous agent relies to a greater 
degree on something akin to judgement. Trusting this judgement combines the dispositional and situational 
trust related to the performance of automated systems with an increased focus on process and purpose, which 
entails a deeper understanding of the agent’s values and preferences. 

5.0 AI AND TRUST CALIBRATION ON THE BATTLEFIELD 

The potential for machine intelligence to provide new capabilities and enhance the performance of existing 
ones can be a significant factor for joint operations, as long as the human operators have properly calibrated 
levels of trust in the systems being operated. As Hoff and Bashir observed, “just as it does in interpersonal 
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relationships, trust plays a leading role in determining the willingness of humans to rely on automated 
systems in situations characterised by uncertainty” [37, p. 407]. For the Alliance, this trust has an additional 
interoperability dimension that further complicates trust calibration. Most existing weapons systems 
employed across Nato are of a similar character and art, despite dissimilar characteristics and manufacturers. 
With the introduction of autonomous agents with which member states have established a certain comfort 
level, that trust may not necessarily be transferable to personnel from different cultural backgrounds and 
attitudes toward machine intelligence. Even within each state’s military forces, however, issues of trust 
calibration will likely vary according the tasks performed machine intelligence across the three categories 
mentioned above: data integration and analysis, autonomous weapons systems, and decision support. 

5.1 Trust calibration for AI data integration and analysis 
For many military applications, the role performed by machine intelligence has already been so fully 
integrated in the system architecture that it may not even be noticeable. Applications can include automated 
language translation tools, AI-steered frequency selection for communications equipment, the integration of 
sensor data to create a holistic view of the battlefield for platform operators, or an intelligent digital entity 
monitoring computer networks for signs of intrusion. For these types of functions, the AI is making 
“choices” and influencing the human operator’s understanding of the situation, which in turn has an effect on 
cognition and the human decisionmaking that result. This use of machine intelligence fits more comfortably 
in the definition of an automated system. Issues of trust calibration are therefore more familiar and more 
thoroughly studied. 

Perhaps the most immediate and obvious concern with this type of application is the high level of 
dispositional or initial trust most operators are likely to grant these types of systems, perhaps even unaware 
the extent to which the AI is shaping the information environment. Proper trust calibration for military 
applications would involve human-machine interface design features that both elicit trust but provide 
adequate levels of transparency, particularly regarding the robustness of the data upon which the machine 
intelligence bases its conclusions. One study suggested that autonomous agents should have an ability to 
evaluate its own self-confidence, including uncertainties in its own knowledge base as well as uncertainties 
about its own state of operation and uncertainties about its reasoning processes [43]. Of course, this too 
would be subject to the same weaknesses as the decision process itself, but could add a useful corrective to 
human tendencies toward automation bias. 

5.2 Trust calibration for autonomous systems 
Interactions with autonomous systems in the physical world – whether it be a ground-based “packbot” 
system, an unmanned refuelling drone, an autonomous surface vessel, or an autonomous weapon system – 
involve the same issues as the algorithmic entities discussed above but entails other unique and challenging 
aspects of human autonomous teaming. These systems represent a truer embodiment of autonomous agents 
with a defined role within a team, and are often discussed in terms of human agent interaction (HAI). 
Therefore, the characteristics of successful interpersonal teaming have greater relevance, including strong 
communication, shared mental models regarding intentions and motivations, and an ability to act predictably 
and collaboratively [44, p. 2.11].  

One study conducted under the auspices of the US Defence Department’s Autonomy Research Pilot 
Initiative examined interactions between a military unit and its autonomous “packbot” squad member, 
finding that displaying data about the robot’s intent and logic strengthened foundations for trust such as 
situational awareness and understanding [40, p. 21]. This transparency can enhance learned trust as operators 
become more proficient and experienced with autonomous agents. A number of transparency models are 
possible, including communication the agent’s intentions and goal structures or its understanding of the 
tasks, an analytical model that focuses on the agent’s inner workings and algorithms, communicating the 
agent’s understanding of the external environment, or a teamwork model that emphasises the division of 
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labour within the team [45].  

Transparency is one potential design feature for enhancing human-autonomy teaming. Any number of other 
engineering details relating to the interface can be influential, but may also be challenging strike a balance 
between eliciting trust and encouraging over-trust. Natural language processing and synthetic speech has 
made significant strides, enabling conversational communication between humans and robots that improves 
transparency and trust [46]. Attributing autonomous agents with human characteristics is a natural 
psychological phenomenon that can enhance cooperation, but such anthropomorphising can have negative 
effects, including creating unfortunate emotional attachments to explosive ordnance disposal robots or 
encouraging overtrust in autonomous agents due to human-like speech patterns [35], [47]. 

Dispositional trust may be most influential during the initial interactions between humans and physical 
autonomous agents, and there is evidence that service members are sceptical to autonomous weapons [48]. 
However, achieving proper trust calibration over time may be most dependent on situational and learned 
trust. The human judgement to either rely on machine intelligence in high-risk situations or leave the critical 
tasks to other humans even if that choice is suboptimal may ultimately be a highly personal one. As with 
human teaming, such decisions are often based in previous experience from similar situations, suggesting 
that comprehensive training exercises with autonomous agents will be an important component in trust 
calibration. 

Training with autonomous systems has been touted as a logical step to encourage trust in human autonomy 
teaming, with the added benefit of providing additional AI training data [49], [50]. Roff and Danks submit 
that the context in which training occurs might also be consequential, emphasising the variations between a 
low-risk environment such as basic training and more advanced exercises that simulated battlefield 
environments. Additional, they suggest leveraging the transitive property of trust by creating an autonomous 
agent “liason officer” within each unit that works more closely with the system to understand its logic, 
motivations and processes. Trust calibration for the remaining members of the unit might then be more easily 
conveyed through the liaison officer, although this approach has its limitations as well [42]. 

5.3 Trust calibration for operational decision support systems 
The issues relating to effective human autonomy teaming discussed above will have an immediate impact at 
the sub-tactical and tactical levels, but some warn that deployment of autonomous systems on the battlefield 
may bring about adaptation at the operational level as well [16], [31], [51]. Greater numbers of autonomous 
platforms operating independently – along with tactical decisionmaking occurring at machine speeds – will 
pose challenges for human cognition and may become a limiting factor in disrupting an adversary’s decision 
loops. Considering the threats an adversary can pose in multiple domains and the amount of information 
required to respond adequately and promptly, one US military leader concluded that “a 20th century 
commander will not survive in that environment” without the assistance of machine intelligence that 
manages that data [52]. This use of machine intelligence incorporates the benefits and risks of trust discussed 
in the previous two sections and adds yet another layer of complexity. 

Leveraging machine intelligence for decision support at the operational level has clear parallels with data 
analysis at the tactical level, particularly the susceptibility to automation bias and tendencies to overlook the 
sometimes-subtle decision making effects of AI. Furthermore, the potential addition of coordinated groups – 
perhaps even swarms – of autonomous weapons or platforms introduces new challenges to existing C2 
procedures such as joint targeting that may themselves require automation in a potentially more fast-paced 
and dynamic environment. For joint operations planners, the element of trust becomes an additional factor 
for evaluating the readiness and efficacy of combat units. Joint operations will likely be more complex with 
the influx of autonomous agents even without potential concepts such as decision-centric algorithmic 
warfare. 
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Of the incremental technological developments ranging from increased autonomy in sensor data analysis, a 
shift from automated to autonomous operation for certain platforms, or greater numbers of autonomous units 
on the battlefield, decision-centric warfare concepts that incorporate AI directly into command and control 
structures may be the most dramatic. The existing awareness of the potential strategic implications of tactical 
decisionmaking has become even more poignant with the advent of continuous news coverage and social 
media. An important part of human autonomy teaming in the military sphere involves the consideration of 
the autonomous agent’s ability to act with an awareness of the conflict’s strategic and political context, as 
well as within the framework of the international laws of armed conflict. This consideration becomes greatly 
amplified at the operational level, as AI-assisted information flows and autonomous control over groups of 
autonomous platforms combine with the consequences of autonomous agent actions at the tactical level.  

Trust is a phenomenon occurring in situations of uncertainty and risk, two aspects of operational planning 
and control that machine intelligence can potentially mitigate with both with fewer personnel in harm’s way 
and improved information processing leading to enhanced situational awareness. As noted in a recent article, 
AI for algorithmic warfare must remain flexible and reduce operational complexity, including an ability to 
“independently compose and adjudicate courses of action” [53, p. 48]. Trusting machine intelligence to act 
as the moral agent “in the loop” for planning and approving specific COAs involves an adequate level of 
comfort in allowing the autonomous agent to evaluate tactical decisions appropriately, which in itself 
involves some sort of machine-based “trust”. Existing research suggests that operators overseeing or 
managing autonomous agents should be given as much situational data as possible, particularly since some 
studies suggest that situational awareness degrades as the number of autonomous agents increases [54]. For 
commanders managing autonomous agents as the human “on the loop”, providing situational understanding 
has been shown to be more effective than simply providing options from which an operator can choose [38]. 

Another issue that could emerge relating to trust and machine intelligence is the somewhat paradoxical 
nature of trust and tactical advantage. Existing research suggests that predictable behaviour given similar 
circumstances engenders trust, but this predictability can be a vulnerability on the battlefield if an adversary 
has similar data analysis tools and can predict algorithmic patterns. After only a few instances of observing 
the algorithmic tactics and behaviours of autonomous agents, their actions might be anticipated and thereby 
countered. To be sure, adaptations can be incorporated into the behaviour of the agents to refrain from 
repeating identical manoeuvres during aerial combat, for example, but this lack of predictability will make 
human-autonomy trust more challenging however advantageous it may be in a tactical sense. The potential 
for adversarial interference with one’s own training data or algorithms will also remain a concern and a 
justified reason for scepticism [55]. 

6.0  CONCLUSIONS 

Research-based knowledge on aspects of trust in human-autonomy teaming is wide-ranging and 
comprehensive, but much of the empirical data naturally relates primarily to the more automated processes 
on the sliding scale from automation to autonomy. Given the likely functions of machine intelligence in joint 
operations, much of this research remains highly relevant – particularly aspects of cultural differences related 
to dispositional trust or common phenomena such as automation bias. The challenges to proper trust 
calibration vary according to the type and category of application, and eliciting sufficient human trust in 
physical autonomous systems may be more challenging than integrated machine learning software for ISR 
data analysis. Ultimately, it remains crucial that appropriate and calibrated levels of trust are achieved to best 
harness the potential and promise of artificial intelligence. 
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